Numerical study of reflectance imaging using a parallel Monte Carlo method.

نویسندگان

  • Cheng Chen
  • Jun Q Lu
  • Kai Li
  • Suisheng Zhao
  • R Scott Brock
  • Xin-Hua Hu
چکیده

Reflectance imaging of biological tissues with visible and near-infrared light has the significant potential to provide a noninvasive and safe imaging modality for diagnosis of dysplastic and malignant lesions in the superficial tissue layers. The difficulty in the extraction of optical and structural parameters lies in the lack of efficient methods for accurate modeling of light scattering in biological tissues of turbid nature. We present a parallel Monte Carlo method for accurate and efficient modeling of reflectance images from turbid tissue phantoms. A parallel Monte Carlo code has been developed with the message passing interface and evaluated on a computing cluster with 16 processing elements. The code was validated against the solutions of the radiative transfer equation on the bidirectional reflection and transmission functions. With this code we investigated numerically the dependence of reflectance image on the imaging system and phantom parameters. The contrasts of reflectance images were found to be nearly independent of the numerical aperture (NA) of the imaging camera despite the fact that reflectance depends on the NA. This enables efficient simulations of the reflectance images using an NA at 1.00. Using heterogeneous tissue phantoms with an embedded region simulating a lesion, we investigated the correlation between the reflectance image profile or contrast and the phantom parameters. It has been shown that the image contrast approaches 0 when the single-scattering albedos of the two regions in the heterogeneous phantoms become matched. Furthermore, a zone of detection has been demonstrated for determination of the thickness of the embedded region and optical parameters from the reflectance image profile and contrast. Therefore, the utility of the reflectance imaging method with visible and near-infrared light has been firmly established. We conclude from these results that the optical parameters of the embedded region can be determined inversely from reflectance images acquired with full-field illumination at multiple incident angles or multiple wavelengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the performance of parallel-hole collimator for high resolution small animal SPECT: A Monte Carlo study

Introduction: Image quality and accuracy of in vivo activity quantification in SPECT are affected by collimator penetration and scatter components, especially in high energy imaging. These phenomena highly depend on the collimator characteristic and photon energy. The presence of penetrated and scattered photons from collimator in SPECT images degrades spatial resolution, contr...

متن کامل

Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation

Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy ...

متن کامل

Determination of the Energy Windows for the Triple Energy Window Scatter Correction Method in Gadolinium-159 Single Photon Emission Computed Tomography Using Monte Carlo Simulation

Introduction: In radionuclide imaging, object scatter is one of the major factors leading to image quality degradation. Therefore, the correction of scattered photons might have a great impact on improving the image quality. Regarding this, the present study aimed to determine the main and sub-energy windows for triple energy window (TEW) scatter correction method usin...

متن کامل

Numerical Study of Light Transport in Apple Models Based on Monte Carlo Simulations

This paper reports on the quantification of light transport in apple models using Monte Carlo simulations. To this end, apple was modeled as a two-layer spherical model including skin and flesh bulk tissues. The optical properties of both tissue types used to generate Monte Carlo data were collected from the literature, and selected to cover a range of values related to three apple varieties. T...

متن کامل

Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps) was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB imag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 34 7  شماره 

صفحات  -

تاریخ انتشار 2007